Biodegradable polylactic acid emulsion ink based on carbon nanotubes and silver for printed pressure sensors


  • Heacock, M. et al. E-waste and harm to vulnerable populations: A growing global problem. Environ. Health Perspect. 124, 550–555 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • The Internet of Trash: IoT Has a Looming E-Waste Problem—IEEE Spectrum. https://spectrum.ieee.org/the-internet-of-trash-iot-has-a-looming-ewaste-problem.

  • Voon, S. L., An, J., Wong, G., Zhang, Y. & Chua, C. K. 3D food printing: A categorized review of inks and their development. Virt. Phys. Prototyp. 14, 203–218. https://doi.org/10.1080/17452759.2019.1603508 (2019).

    Article 

    Google Scholar 

  • Magdassi, S. The Chemistry of Inkjet Inks (World Scientific, 2009).

    Google Scholar 

  • Tan, M. J. et al. Biodegradable electronics: Cornerstone for sustainable electronics and transient applications. J. Mater. Chem. C Mater. 4, 5531–5558 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Zeng, X., Yang, C., Chiang, J. F. & Li, J. Innovating e-waste management: From macroscopic to microscopic scales. Sci. Total Environ. 575, 1–5 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Htwe, Y. Z. N. & Mariatti, M. Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: Progress, opportunities, and challenges. J. Sci. Adv. Mater. Devices 7, 100435 (2022).

    CAS 

    Google Scholar 

  • Barhoum, A., Samyn, P., Öhlund, T. & Dufresne, A. Review of recent research on flexible multifunctional nanopapers. Nanoscale 9, 15181–15205 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Piemonte, V., Sabatini, S. & Gironi, F. Chemical recycling of PLA: A great opportunity towards the sustainable development? J. Polym. Environ. 21, 640. https://doi.org/10.1007/s10924-013-0608-9 (2013).

    Article 
    CAS 

    Google Scholar 

  • Spierling, S. et al. End-of-life options for bio-based plastics in a circular economy—Status quo and potential from a life cycle assessment perspective. Resources 9, 90 (2020).

    Google Scholar 

  • Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Segev-Bar, M. & Haick, H. Flexible sensors based on nanoparticles. ACS Nano 7, 8366–8378 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Tran, T. S., Dutta, N. K. & Choudhury, N. R. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications. Adv. Colloid Interface Sci. 261, 41–61 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Yuan, J. K., Yao, S. H., Sylvestre, A. & Bai, J. Biphasic polymer blends containing carbon nanotubes: Heterogeneous nanotube distribution and its influence on the dielectric properties. J. Phys. Chem. C 116, 2051–2058 (2012).

    CAS 

    Google Scholar 

  • Dermanaki Farahani, R., Gagne, M., Klemberg-Sapieha, J. E. & Therriault, D. Electrically conductive silver nanoparticles-filled nanocomposite materials as surface coatings of composite structures. Adv. Eng. Mater. 18, 1189–1199 (2016).

    CAS 

    Google Scholar 

  • Al-Saleh, M. H., Gelves, G. A. & Sundararaj, U. Copper nanowire/polystyrene nanocomposites: Lower percolation threshold and higher EMI shielding. Compos. A Appl. Sci. Manuf. 42, 92–97 (2011).

    Google Scholar 

  • Farahani, R. D., Klemberg-Sapieha, J. E. & Therriault, D. Enhanced conductivity of nanocomposite films through heterogeneous distribution of nanofillers during processing. Mater. Des. 88, 1175–1182 (2015).

    CAS 

    Google Scholar 

  • Lynch, P. J. et al. Graphene-based printable conductors for cyclable strain sensors on elastomeric substrates. Carbon N. Y. 169, 25–31 (2020).

    CAS 

    Google Scholar 

  • Zhao, S. et al. Percolation threshold-inspired design of hierarchical multiscale hybrid architectures based on carbon nanotubes and silver nanoparticles for stretchable and printable electronics. J. Mater. Chem. C Mater. 4, 6666–6674 (2016).

    CAS 

    Google Scholar 

  • Coleman, J. N., Khan, U. & Gun’ko, Y. K. Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 689–706 (2006).

    CAS 

    Google Scholar 

  • Cataldi, P., Athanassiou, A. & Bayer, I. S. Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. 8, 1438 (2018).

    Google Scholar 

  • Cai, L. & Wang, C. Carbon nanotube flexible and stretchable electronics. Nanoscale Res. Lett. 10, 1–21 (2015).

    ADS 

    Google Scholar 

  • Bagotia, N., Choudhary, V. & Sharma, D. K. Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Compos. B Eng. 159, 378–388 (2019).

    CAS 

    Google Scholar 

  • Kharissova, O. V., Kharisov, B. I. & De Casas Ortiz, E. G. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Adv. 3, 24812–24852 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Venkata Krishna Rao, R., Venkata Abhinav, K., Karthik, P. S. & Singh, S. P. Conductive silver inks and their applications in printed and flexible electronics. RSC Adv. 5, 77760–77790 (2015).

    ADS 

    Google Scholar 

  • Zhang, S. et al. Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites. J. Alloys Compd. 652, 48–54 (2015).

    CAS 

    Google Scholar 

  • Mo, L. et al. Silver nanoparticles based ink with moderate sintering in flexible and printed electronics. Int. J. Mol. Sci. 20, 2124 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, N. & Kim, D. H. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot. 1, 53–62 (2013).

    Google Scholar 

  • Yu, T., Tao, Y., Wang, B., Wang, L. & Tai, Y. A facile approach to a silver conductive ink with high performance for macroelectronics. Nanoscale Res. Lett. 8, 1–6 (2013).

    ADS 

    Google Scholar 

  • Black, K. et al. Silver ink formulations for sinter-free printing of conductive films. Sci. Rep. 6, 1–7 (2016).

    Google Scholar 

  • Mo, L. et al. Nano-silver ink of high conductivity and low sintering temperature for paper electronics. Nanoscale Res. Lett. 14, 1–11 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Li, W. W. et al. One-step synthesis of Ag nanoparticles for fabricating highly conductive patterns using infrared sintering. J. Mater. Res. Technol. 9, 142–151 (2020).

    CAS 

    Google Scholar 

  • Gao, M., Li, L. & Song, Y. Inkjet printing wearable electronic devices. J. Mater. Chem. C Mater. 5, 2971–2993 (2017).

    CAS 

    Google Scholar 

  • Lee, C. L., Chen, C. H. & Chen, C. W. Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem. Eng. J. 230, 296–302 (2013).

    CAS 

    Google Scholar 

  • Htwe, Y. Z. N., Abdullah, M. K. & Mariatti, M. Water-based graphene/AgNPs hybrid conductive inks for flexible electronic applications. J. Mater. Res. Technol. 16, 59–73 (2022).

    CAS 

    Google Scholar 

  • Htwe, Y. Z. N. N., Hidayah, I. N., Mariatti, M., Hidayah, I. N. & Mariatti, M. Performance of inkjet-printed strain sensor based on graphene/silver nanoparticles hybrid conductive inks on polyvinyl alcohol substrate. J. Mater. Sci. Mater. Electron. 31, 15361–15371 (2020).

    CAS 

    Google Scholar 

  • Ghadimi, S., Mazinani, S., Bazargan, A. M. & Sharif, F. Effect of formulation and process on morphology and electrical conductivity of Ag–graphene hybrid inks. Synth. Met. 281, 116913 (2021).

    CAS 

    Google Scholar 

  • Stano, G. et al. One-shot additive manufacturing of robotic finger with embedded sensing and actuation. Int. J. Adv. Manuf. Technol. 124, 467–485 (2023).

    Google Scholar 

  • Wallin, T. J., Pikul, J. & Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 3, 84–100 (2018).

    ADS 

    Google Scholar 

  • Won, P. et al. 3D printing of liquid metal embedded elastomers for soft thermal and electrical materials. ACS Appl. Mater. Interfaces 14, 55028–55038 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Shin, S. R. et al. A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv. Mater. 28, 3280–3289 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, X. et al. Preparation and characterization of lysozyme@carbon nanotubes/waterborne polyurethane composite and the potential application in printing inks. Prog. Org. Coat. 142, 105600 (2020).

    CAS 

    Google Scholar 

  • Htwe, Y. Z. N., Abdullah, M. K. & Mariatti, M. Optimization of graphene conductive ink using solvent exchange techniques for flexible electronics applications. Synth. Met. 274, 116719 (2021).

    CAS 

    Google Scholar 

  • Nguyen, P. Q. M., Yeo, L. P., Lok, B. K. & Lam, Y. C. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics. ACS Appl. Mater. Interfaces 6, 4011–4016 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Saidina, D. S., Zubir, S. A., Fontana, S., Hérold, C. & Mariatti, M. Synthesis and characterization of graphene-based inks for spray-coating applications. J. Electron. Mater. 48, 5757–5770 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Kang, J. W. et al. Fully spray-coated inverted organic solar cells. Solar Energy Mater. Solar Cells 103, 76–79 (2012).

    CAS 

    Google Scholar 

  • Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Mater. Solar Cells 93, 394–412 (2009).

    CAS 

    Google Scholar 

  • Najafi, M. et al. Polylactic acid-graphene emulsion ink based conductive cotton fabrics. J. Mater. Res. Technol. 18, 5197–5211 (2022).

    CAS 

    Google Scholar 

  • Lei, L., Zhong, L., Lin, X., Li, Y. & Xia, Z. Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink. Chem. Eng. J. 253, 518–525 (2014).

    CAS 

    Google Scholar 

  • Hu, Y. Q. et al. Fabrication and characterization of novel pickering emulsions and pickering high internal emulsions stabilized by gliadin colloidal particles. Food Hydrocolloid 61, 300–310 (2016).

    CAS 

    Google Scholar 

  • Low, L. E., Siva, S. P., Ho, Y. K., Chan, E. S. & Tey, B. T. Recent advances of characterization techniques for the formation, physical properties and stability of pickering emulsion. Adv. Colloid Interface Sci. 277, 102117 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zhai, W., Li, G., Yu, P., Yang, L. & Mao, L. Silver phosphate/carbon nanotube-stabilized pickering emulsion for highly efficient photocatalysis. J. Phys. Chem. C 117, 15183–15191 (2013).

    CAS 

    Google Scholar 

  • Briggs, N. M. et al. Multiwalled carbon nanotubes at the interface of pickering emulsions. Langmuir 31, 13077–13084 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, J. Y., Tang, C. H., Yin, S. W. & Yang, X. Q. Development and characterization of novel antimicrobial bilayer films based on polylactic acid (PLA)/pickering emulsions. Carbohydr. Polym. 181, 727–735 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Chang, C. W., Cheng, T. Y. & Liao, Y. C. Encapsulated silver nanoparticles in water/oil emulsion for conductive inks. J. Taiwan Inst. Chem. Eng. 92, 8–14 (2018).

    CAS 

    Google Scholar 

  • Zhang, W. Nanoparticle aggregation: Principles and modeling. Adv. Exp. Med. Biol. 811, 20–43 (2014).

    ADS 

    Google Scholar 

  • Pinchuk, A. O. Size-dependent Hamaker constant for silver nanoparticles. J. Phys. Chem. C 116, 20099–20120 (2012).

    CAS 

    Google Scholar 

  • El Badawy, A. M., Scheckel, K. G., Suidan, M. & Tolaymat, T. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci. Total Environ. 429, 325–331 (2012).

    ADS 
    PubMed 

    Google Scholar 

  • Marcq, F. et al. Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives. Microelectron. Reliab. 51, 1230–1234 (2011).

    CAS 

    Google Scholar 

  • Pop, E., Mann, D., Wang, Q., Goodson, K. & Dai, H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, D. J., Wang, S. G., Zhang, Q., Sellin, P. J. & Chen, G. Thermal and electrical transport in multi-walled carbon nanotubes. Phys. Lett. A 329, 207–213 (2004).

    ADS 
    CAS 

    Google Scholar 

  • Wang, C., Takei, K., Takahashi, T. & Javey, A. Carbon nanotube electronics—Moving forward. Chem. Soc. Rev. 42, 2592–2609 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Park, S., Vosguerichian, M. & Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5, 1727–1752 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Narayanan, G. N., Ganesh, R. S. & Karthigeyan, A. Effect of annealing temperature on structural, optical and electrical properties of hydrothermal assisted zinc oxide nanorods. Thin Solid Films 598, 39–45 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Kim, H. & Lee, S. Characteristics of electrical heating elements coated with graphene nanocomposite on polyester fabric: Effect of different graphene contents and annealing temperatures. Fibers Polym. 19, 965–976 (2018).

    CAS 

    Google Scholar 

  • Guigo, N., Forestier, E. & Sbirrazzuoli, N. Thermal properties of biobased polymers: Furandicarboxylic acid (FDCA)-based polyesters. Adv. Polym. Sci. 283, 189–217 (2019).

    CAS 

    Google Scholar 

  • Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O. & Maspoch, M. L. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 95, 116–125 (2010).

    CAS 

    Google Scholar 

  • Murariu, M., Da Silva Ferreira, A., Alexandre, M. & Dubois, P. Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym. Adv. Technol. 19, 636–646 (2008).

    CAS 

    Google Scholar 

  • Pyda, M. & Wunderlich, B. Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC. Macromolecules 38, 10472–10479 (2005).

    ADS 
    CAS 

    Google Scholar 

  • Shi, H., Liu, C., Jiang, Q. & Xu, J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: A review. Adv. Electron. Mater. 1, 1500017 (2015).

    Google Scholar 

  • Huang, J., Miller, P. F., De Mello, J. C., De Mello, A. J. & Bradley, D. D. C. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synth. Met. 139, 569–572 (2003).

    CAS 

    Google Scholar 

  • Han, Z. & Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 36, 914–944 (2011).

    CAS 

    Google Scholar 

  • Forestier, E. et al. Characterization and performance of silicone modified polylactic acid (PLA)-graphene nanoplatelet ink coatings for flexible elastomeric substrates. Prog. Org. Coat. 174, 107251 (2023).

    CAS 

    Google Scholar 

  • Radjabian, M., Kish, M. H. & Mohammadi, N. Structure-property relationship for poly(lactic acid) (PLA) filaments: Physical, thermomechanical and shape memory characterization. J. Polym. Res. 19, 1–10 (2012).

    CAS 

    Google Scholar 

  • Wang, J. et al. Improving the conductivity of single-walled carbon nanotubes films by heat treatment. J. Alloys Compd. 485, 456–461 (2009).

    CAS 

    Google Scholar 

  • Hong, W. T. & Tai, N. H. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diam. Relat. Mater. 17, 1577–1581 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Wang, G. F., Tao, X. M., Xin, J. H. & Fei, B. Modification of conductive polymer for polymeric anodes of flexible organic light-emitting diodes. Nanoscale Res. Lett. 4, 613–617 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. S., Lee, C.Y.-C. & Arnold, F. E. Mechanical and electrical properties of heat-treated ladder polymer fiber. MRS Online Proc. Libr. 247, 747 (1992).

    CAS 

    Google Scholar 

  • Gong, Q. M. et al. The effect of high-temperature annealing on the structure and electrical properties of well-aligned carbon nanotubes. Mater. Res. Bull. 42, 474–481 (2007).

    CAS 

    Google Scholar 

  • Hou, Y. H., Zhang, M. Q., Rong, M. Z., Yu, G. & Zeng, H. M. Improvement of conductive network quality in carbon black-filled polymer blends. J. Appl. Polym. Sci. 84, 2768–2775 (2002).

    CAS 

    Google Scholar 

  • Luoma, E. et al. Oriented and annealed poly(lactic acid) films and their performance in flexible printed and hybrid electronics. J. Plast. Film Sheet. 37, 429–462 (2021).

    CAS 

    Google Scholar 

  • Ma, P. C., Tang, B. Z. & Kim, J. K. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon N. Y. 46, 1497–1505 (2008).

    CAS 

    Google Scholar 

  • Huang, X. et al. Biodegradable materials for multilayer transient printed circuit boards. Adv. Mater. 26, 7371–7377 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Bortz, D. R., Heras, E. G. & Martin-Gullon, I. Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45, 238–245 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Loh, T. W., Ladani, R. B., Orifici, A. & Kandare, E. Ultra-tough and in-situ repairable carbon/epoxy composite with EMAA. Compos. A Appl. Sci. Manuf. 143, 106206 (2021).

    CAS 

    Google Scholar 

  • Chun, K. Y. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853–857 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ghatge, S., Yang, Y., Ahn, J. H. & Hur, H. G. Biodegradation of polyethylene: A brief review. Appl. Biol. Chem. 63, 1–14 (2020).

    Google Scholar 

  • Garbini, G. L., Barra Caracciolo, A. & Grenni, P. Electroactive bacteria in natural ecosystems and their applications in microbial fuel cells for bioremediation: A review. Microorganisms 11, 1255 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, X., von Haxthausen, K. A., Brock, A. L. & Trapp, S. Turnover of lake sediments treated with sediment microbial fuel cells: A long-term study in a eutrophic lake. Sci. Total Environ. 796, 148880 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shi, K. et al. Accelerated bioremediation of a complexly contaminated river sediment through ZVI-electrode combined stimulation. J. Hazard. Mater. 413, 125392 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Y. et al. Enhanced bioelectroremediation of a complexly contaminated river sediment through stimulating electroactive degraders with methanol supply. J. Hazard. Mater. 349, 168–176 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lovley, D. R. & Holmes, D. E. Electromicrobiology: The ecophysiology of phylogenetically diverse electroactive microorganisms. Nat. Rev. Microbiol. 20, 5–19 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Yaqoob, A. A. et al. Utilizing biomass-based graphene oxide–polyaniline–ag electrodes in microbial fuel cells to boost energy generation and heavy metal removal. Polymers 14, 845 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbas, S. Z. & Rafatullah, M. Recent advances in soil microbial fuel cells for soil contaminants remediation. Chemosphere 272, 129691 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Di Franca, M. L. et al. Microbiome composition and dynamics of a reductive/oxidative bioelectrochemical system for perchloroethylene removal: Effect of the feeding composition. Front. Microbiol. 13, 951911 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yong, Y. C., Dong, X. C., Chan-Park, M. B., Song, H. & Chen, P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6, 2394–2400 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, X. et al. Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: A review. J. Mater. Sci. Technol. 31, 708–722 (2015).

    Google Scholar 

  • Mort, R. et al. Waterborne polyurethane/acrylic adhesive blends from Physaria fendleri oil for food packaging applications. Sustainability 14, 8657 (2022).

    CAS 

    Google Scholar 

  • Abd El-Rehim, H. A., Hegazy, E. S. A., Ali, A. M. & Rabie, A. M. Synergistic effect of combining UV-sunlight-soil burial treatment on the biodegradation rate of LDPE/starch blends. J. Photochem. Photobiol. A Chem. 163, 547–556 (2004).

    CAS 

    Google Scholar 

  • Middleton, J. C. & Tipton, A. J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21, 2335–2346 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Gao, L. et al. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 11, 25034–25042 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Mohanraj, G. T., Chaki, T. K., Chakraborty, A. & Khastgir, D. Measurement of AC conductivity and dielectric properties of flexible conductive styrene–butadiene rubber-carbon black composites. J. Appl. Polym. Sci. 104, 986–995 (2007).

    CAS 

    Google Scholar 

  • Sethi, D., Ram, R. & Khastgir, D. Electrical conductivity and dynamic mechanical properties of silicon rubber-based conducting composites: Effect of cyclic deformation, pressure and temperature. Polym. Int. 66, 1295–1305 (2017).

    CAS 

    Google Scholar 

  • Das, N. C., Chaki, T. K. & Khastgir, D. Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites. Polym. Int. 51, 156–163 (2002).

    CAS 

    Google Scholar 

  • Cataldi, P., Ceseracciu, L., Marras, S., Athanassiou, A. & Bayer, I. S. Electrical conductivity enhancement in thermoplastic polyurethane-graphene nanoplatelet composites by stretch-release cycles. Appl. Phys. Lett. 110, 121904 (2017).

    ADS 

    Google Scholar 

  • Qu, M. et al. Flexible conductive Ag-CNTs sponge with corrosion resistance for wet condition sensing and human motion detection. Colloids Surf. A Physicochem. Eng. Asp. 656, 130427 (2023).

    CAS 

    Google Scholar 

  • Lin, Q. et al. Construction of a 3D interconnected boron nitride nanosheets in a PDMS matrix for high thermal conductivity and high deformability. Compos. Sci. Technol. 226, 109528 (2022).

    CAS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back To Top